
Towards a Formalization of Responsibility

Tiago de Lima1 Lambèr Royakkers1 Frank Dignum2

1Eindhoven University of Technology, the Netherlands

2Utrecht University, the Netherlands

3rd International Workshop on Normative Multiagent
Systems

Luxembourg, 15 July 2008

1/ 24



Responsibility

Example. Alice, an employee of the financial department, has
access to several different bank accounts of the company. From
time to time the director of the department asks her to make
money transfers between these accounts. But last Monday she
heard from the director: “— From now on you will decide when
and how to make the transfers. I am making you responsible for
maintaining the balance of all accounts positive.”

The meaning of the term ‘responsibility’ in this example implies
the duty, or the obligation, to ensure that each account balance
will be positive.

This is compatible with the following definition, suggested by
[Santos and Carmo, 1996].

Definition (Notion 1). Agent a is responsible for ϕ if and only if
a is obliged to ensure that ϕ.

2/ 24



Responsibility

Example. Alice, an employee of the financial department, has
access to several different bank accounts of the company. From
time to time the director of the department asks her to make
money transfers between these accounts. But last Monday she
heard from the director: “— From now on you will decide when
and how to make the transfers. I am making you responsible for
maintaining the balance of all accounts positive.”

The meaning of the term ‘responsibility’ in this example implies
the duty, or the obligation, to ensure that each account balance
will be positive.

This is compatible with the following definition, suggested by
[Santos and Carmo, 1996].

Definition (Notion 1). Agent a is responsible for ϕ if and only if
a is obliged to ensure that ϕ.

2/ 24



Responsibility

Example. Alice, an employee of the financial department, has
access to several different bank accounts of the company. From
time to time the director of the department asks her to make
money transfers between these accounts. But last Monday she
heard from the director: “— From now on you will decide when
and how to make the transfers. I am making you responsible for
maintaining the balance of all accounts positive.”

The meaning of the term ‘responsibility’ in this example implies
the duty, or the obligation, to ensure that each account balance
will be positive.

This is compatible with the following definition, suggested by
[Santos and Carmo, 1996].

Definition (Notion 1). Agent a is responsible for ϕ if and only if
a is obliged to ensure that ϕ.

2/ 24



Responsibility

Example. Alice, an employee of the financial department, has
access to several different bank accounts of the company. From
time to time the director of the department asks her to make
money transfers between these accounts. But last Monday she
heard from the director: “— From now on you will decide when
and how to make the transfers. I am making you responsible for
maintaining the balance of all accounts positive.”

The meaning of the term ‘responsibility’ in this example implies
the duty, or the obligation, to ensure that each account balance
will be positive.

This is compatible with the following definition, suggested by
[Santos and Carmo, 1996].

Definition (Notion 1). Agent a is responsible for ϕ if and only if
a is obliged to ensure that ϕ.

2/ 24



Responsibility

Example (continuation). On Tuesday the balance of account 1
is 10,000 Euro, while the balance of account 2 is only 50 Euro!
Moreover, the company will spend 5,000 Euro from account 2
either on Tuesday or Wednesday.

So, Alice must make a decision. In particular, she has the
choice between making a transfer from account 1 to account 2
on Tuesday or wait until Wednesday.

3/ 24



Responsibility

Example (continuation). On Tuesday the balance of account 1
is 10,000 Euro, while the balance of account 2 is only 50 Euro!
Moreover, the company will spend 5,000 Euro from account 2
either on Tuesday or Wednesday.

So, Alice must make a decision. In particular, she has the
choice between making a transfer from account 1 to account 2
on Tuesday or wait until Wednesday.

3/ 24



Responsibility

Example (continuation). Alice decides leave the transfer to
Wednesday. However, the company spends the money on
Tuesday, and therefore she hears from the director: “— You are
responsible for the balance of account 2 is negative!”

The meaning of the term ‘responsibility’ in this case implies
blameworthiness, or the guilty of the negative balance.

The latter is compatible with the following definition, based on
[Kein, 1993] and [Heinaman, 1993].

Definition (Notion 2). Agent a is responsible for ϕ if and only if
a freely, knowingly and intentionally behaves in such a way that
is necessary for the occurrence of a “wrong” consequence ϕ.

4/ 24



Responsibility

Example (continuation). Alice decides leave the transfer to
Wednesday. However, the company spends the money on
Tuesday, and therefore she hears from the director: “— You are
responsible for the balance of account 2 is negative!”

The meaning of the term ‘responsibility’ in this case implies
blameworthiness, or the guilty of the negative balance.

The latter is compatible with the following definition, based on
[Kein, 1993] and [Heinaman, 1993].

Definition (Notion 2). Agent a is responsible for ϕ if and only if
a freely, knowingly and intentionally behaves in such a way that
is necessary for the occurrence of a “wrong” consequence ϕ.

4/ 24



Responsibility

Example (continuation). Alice decides leave the transfer to
Wednesday. However, the company spends the money on
Tuesday, and therefore she hears from the director: “— You are
responsible for the balance of account 2 is negative!”

The meaning of the term ‘responsibility’ in this case implies
blameworthiness, or the guilty of the negative balance.

The latter is compatible with the following definition, based on
[Kein, 1993] and [Heinaman, 1993].

Definition (Notion 2). Agent a is responsible for ϕ if and only if
a freely, knowingly and intentionally behaves in such a way that
is necessary for the occurrence of a “wrong” consequence ϕ.

4/ 24



Responsibility

We therefore can distinguish (at least) two different uses for the
term ‘responsibility’.

Notion 1 is called forward-looking responsibility.

Notion 2 is called backward-looking responsibility.

Note that these two notions are somehow related. For instance,
in the example Alice is considered backward-looking
responsible for the negative balance because she was firstly
held forward-looking responsible for maintaining the balance
positive.

In this work we try to build a framework wherein one can
formalize these two notions and capture the relation between
them.

5/ 24



Responsibility

We therefore can distinguish (at least) two different uses for the
term ‘responsibility’.

Notion 1 is called forward-looking responsibility.

Notion 2 is called backward-looking responsibility.

Note that these two notions are somehow related. For instance,
in the example Alice is considered backward-looking
responsible for the negative balance because she was firstly
held forward-looking responsible for maintaining the balance
positive.

In this work we try to build a framework wherein one can
formalize these two notions and capture the relation between
them.

5/ 24



Responsibility

We therefore can distinguish (at least) two different uses for the
term ‘responsibility’.

Notion 1 is called forward-looking responsibility.

Notion 2 is called backward-looking responsibility.

Note that these two notions are somehow related. For instance,
in the example Alice is considered backward-looking
responsible for the negative balance because she was firstly
held forward-looking responsible for maintaining the balance
positive.

In this work we try to build a framework wherein one can
formalize these two notions and capture the relation between
them.

5/ 24



Responsibility

We therefore can distinguish (at least) two different uses for the
term ‘responsibility’.

Notion 1 is called forward-looking responsibility.

Notion 2 is called backward-looking responsibility.

Note that these two notions are somehow related. For instance,
in the example Alice is considered backward-looking
responsible for the negative balance because she was firstly
held forward-looking responsible for maintaining the balance
positive.

In this work we try to build a framework wherein one can
formalize these two notions and capture the relation between
them.

5/ 24



Action-Based Alternating-Time Transition Systems

Assume:
I a set of actions Act,
I a set of atoms Atm,
I a finite set of agents Agt.

Jact denotes the set of all functions α : Agt→ Act
(i.e., the set of joint actions available for Agt).
Models are tuples 〈W,T,Σ, V 〉 where:

I W is the set of states (or possible worlds),
I T : (W × Jact) →W is a partial transition function,
I Σ is the set of all functions σ : W → Jact such that

for each σ(w) there is w′ ∈W such that T (w, σ(w)) = w′

(i.e., the set of joint strategies available for Agt),
I V : Atm→ 2W is the interpretation of atoms.

6/ 24



Action-Based Alternating-Time Transition Systems

Assume:
I a set of actions Act,
I a set of atoms Atm,
I a finite set of agents Agt.

Jact denotes the set of all functions α : Agt→ Act
(i.e., the set of joint actions available for Agt).
Models are tuples 〈W,T,Σ, V 〉 where:

I W is the set of states (or possible worlds),
I T : (W × Jact) →W is a partial transition function,
I Σ is the set of all functions σ : W → Jact such that

for each σ(w) there is w′ ∈W such that T (w, σ(w)) = w′

(i.e., the set of joint strategies available for Agt),
I V : Atm→ 2W is the interpretation of atoms.

6/ 24



Action-Based Alternating-Time Transition Systems

Assume:
I a set of actions Act,
I a set of atoms Atm,
I a finite set of agents Agt.

Jact denotes the set of all functions α : Agt→ Act
(i.e., the set of joint actions available for Agt).

Models are tuples 〈W,T,Σ, V 〉 where:

I W is the set of states (or possible worlds),
I T : (W × Jact) →W is a partial transition function,
I Σ is the set of all functions σ : W → Jact such that

for each σ(w) there is w′ ∈W such that T (w, σ(w)) = w′

(i.e., the set of joint strategies available for Agt),
I V : Atm→ 2W is the interpretation of atoms.

6/ 24



Action-Based Alternating-Time Transition Systems

Assume:
I a set of actions Act,
I a set of atoms Atm,
I a finite set of agents Agt.

Jact denotes the set of all functions α : Agt→ Act
(i.e., the set of joint actions available for Agt).
Models are tuples 〈W,T,Σ, V 〉 where:

I W is the set of states (or possible worlds),

I T : (W × Jact) →W is a partial transition function,
I Σ is the set of all functions σ : W → Jact such that

for each σ(w) there is w′ ∈W such that T (w, σ(w)) = w′

(i.e., the set of joint strategies available for Agt),
I V : Atm→ 2W is the interpretation of atoms.

6/ 24



Action-Based Alternating-Time Transition Systems

Assume:
I a set of actions Act,
I a set of atoms Atm,
I a finite set of agents Agt.

Jact denotes the set of all functions α : Agt→ Act
(i.e., the set of joint actions available for Agt).
Models are tuples 〈W,T,Σ, V 〉 where:

I W is the set of states (or possible worlds),
I T : (W × Jact) →W is a partial transition function,

I Σ is the set of all functions σ : W → Jact such that
for each σ(w) there is w′ ∈W such that T (w, σ(w)) = w′

(i.e., the set of joint strategies available for Agt),
I V : Atm→ 2W is the interpretation of atoms.

6/ 24



Action-Based Alternating-Time Transition Systems

Assume:
I a set of actions Act,
I a set of atoms Atm,
I a finite set of agents Agt.

Jact denotes the set of all functions α : Agt→ Act
(i.e., the set of joint actions available for Agt).
Models are tuples 〈W,T,Σ, V 〉 where:

I W is the set of states (or possible worlds),
I T : (W × Jact) →W is a partial transition function,
I Σ is the set of all functions σ : W → Jact such that

for each σ(w) there is w′ ∈W such that T (w, σ(w)) = w′

(i.e., the set of joint strategies available for Agt),

I V : Atm→ 2W is the interpretation of atoms.

6/ 24



Action-Based Alternating-Time Transition Systems

Assume:
I a set of actions Act,
I a set of atoms Atm,
I a finite set of agents Agt.

Jact denotes the set of all functions α : Agt→ Act
(i.e., the set of joint actions available for Agt).
Models are tuples 〈W,T,Σ, V 〉 where:

I W is the set of states (or possible worlds),
I T : (W × Jact) →W is a partial transition function,
I Σ is the set of all functions σ : W → Jact such that

for each σ(w) there is w′ ∈W such that T (w, σ(w)) = w′

(i.e., the set of joint strategies available for Agt),
I V : Atm→ 2W is the interpretation of atoms.

6/ 24



Action-Based Alternating-Time Transition Systems
For example:
Act = {skip, spend, transf}, Atm = {p}, and Agt = {a, c}.

Jact contains:
α0 = {(a, skip), (c, spend)}, α1 = {(a, transf), (c, skip)}, . . .

sk
ip

, s
ki

p

transf, skiptransf, spend

skip, spend

p

p

p

p

w0

skip, skip

p

...

...

...

transf, skip

w1

w2

w3

Σ contains: σ = {(w0, α0), (w1, α1), . . . }.

7/ 24



Action-Based Alternating-Time Transition Systems
For example:
Act = {skip, spend, transf}, Atm = {p}, and Agt = {a, c}.
Jact contains:
α0 = {(a, skip), (c, spend)}, α1 = {(a, transf), (c, skip)}, . . .

sk
ip

, s
ki

p

transf, skiptransf, spend

skip, spend

p

p

p

p

w0

skip, skip

p

...

...

...

transf, skip

w1

w2

w3

Σ contains: σ = {(w0, α0), (w1, α1), . . . }.

7/ 24



Action-Based Alternating-Time Transition Systems
For example:
Act = {skip, spend, transf}, Atm = {p}, and Agt = {a, c}.
Jact contains:
α0 = {(a, skip), (c, spend)}, α1 = {(a, transf), (c, skip)}, . . .

sk
ip

, s
ki

p

transf, skiptransf, spend

skip, spend

p

p

p

p

w0

skip, skip

p

...

...

...

transf, skip

w1

w2

w3

Σ contains: σ = {(w0, α0), (w1, α1), . . . }.

7/ 24



Language

Ls is the set of state formulas.
Lp is the set of path formulas.

Ls is defined by:
I if p ∈ Atm then p ∈ Ls;
I if ϕ ∈ Ls then ¬ϕ ∈ Ls;
I if ϕ1, ϕ2 ∈ Ls then ϕ1 ∨ ϕ2 ∈ Ls;
I if σ ∈ Σ, C ⊆ Agt and ψ ∈ Lp then [C:σ]ψ ∈ Ls;
I if C ⊆ Agt and ψ ∈ Lp then 〈〈C〉〉ψ ∈ Ls;

and Lp is defined by:
I if ϕ ∈ Ls then Xϕ,Gϕ ∈ Lp;
I if ϕ1, ϕ2 ∈ Ls then ϕ1Uϕ2 ∈ Lp.

8/ 24



Language

Ls is the set of state formulas.
Lp is the set of path formulas.

Ls is defined by:
I if p ∈ Atm then p ∈ Ls;
I if ϕ ∈ Ls then ¬ϕ ∈ Ls;
I if ϕ1, ϕ2 ∈ Ls then ϕ1 ∨ ϕ2 ∈ Ls;
I if σ ∈ Σ, C ⊆ Agt and ψ ∈ Lp then [C:σ]ψ ∈ Ls;
I if C ⊆ Agt and ψ ∈ Lp then 〈〈C〉〉ψ ∈ Ls;

and Lp is defined by:
I if ϕ ∈ Ls then Xϕ,Gϕ ∈ Lp;
I if ϕ1, ϕ2 ∈ Ls then ϕ1Uϕ2 ∈ Lp.

8/ 24



Language

Ls is the set of state formulas.
Lp is the set of path formulas.

Ls is defined by:
I if p ∈ Atm then p ∈ Ls;
I if ϕ ∈ Ls then ¬ϕ ∈ Ls;
I if ϕ1, ϕ2 ∈ Ls then ϕ1 ∨ ϕ2 ∈ Ls;
I if σ ∈ Σ, C ⊆ Agt and ψ ∈ Lp then [C:σ]ψ ∈ Ls;
I if C ⊆ Agt and ψ ∈ Lp then 〈〈C〉〉ψ ∈ Ls;

and Lp is defined by:
I if ϕ ∈ Ls then Xϕ,Gϕ ∈ Lp;
I if ϕ1, ϕ2 ∈ Ls then ϕ1Uϕ2 ∈ Lp.

8/ 24



Language

Ls is the set of state formulas.
Lp is the set of path formulas.

Ls is defined by:
I if p ∈ Atm then p ∈ Ls;
I if ϕ ∈ Ls then ¬ϕ ∈ Ls;
I if ϕ1, ϕ2 ∈ Ls then ϕ1 ∨ ϕ2 ∈ Ls;
I if σ ∈ Σ, C ⊆ Agt and ψ ∈ Lp then [C:σ]ψ ∈ Ls;
I if C ⊆ Agt and ψ ∈ Lp then 〈〈C〉〉ψ ∈ Ls;

and Lp is defined by:
I if ϕ ∈ Ls then Xϕ,Gϕ ∈ Lp;
I if ϕ1, ϕ2 ∈ Ls then ϕ1Uϕ2 ∈ Lp.

8/ 24



Language

For example:

State formula: p ∨ ¬p

Path formula: X(p ∨ ¬p)
State formula: [C:σ]X(p ∨ p)
Path formula: pU([C:σ]X(p ∨ p))
State formula: 〈〈C〉〉(pU([C:σ]X(p ∨ p)))

These are not well-formed formulas:

GXp
[C:σ][C:σ]p
〈〈C〉〉[C:σ]p
[C:σ]〈〈C〉〉p

9/ 24



Language

For example:

State formula: p ∨ ¬p
Path formula: X(p ∨ ¬p)

State formula: [C:σ]X(p ∨ p)
Path formula: pU([C:σ]X(p ∨ p))
State formula: 〈〈C〉〉(pU([C:σ]X(p ∨ p)))

These are not well-formed formulas:

GXp
[C:σ][C:σ]p
〈〈C〉〉[C:σ]p
[C:σ]〈〈C〉〉p

9/ 24



Language

For example:

State formula: p ∨ ¬p
Path formula: X(p ∨ ¬p)
State formula: [C:σ]X(p ∨ p)

Path formula: pU([C:σ]X(p ∨ p))
State formula: 〈〈C〉〉(pU([C:σ]X(p ∨ p)))

These are not well-formed formulas:

GXp
[C:σ][C:σ]p
〈〈C〉〉[C:σ]p
[C:σ]〈〈C〉〉p

9/ 24



Language

For example:

State formula: p ∨ ¬p
Path formula: X(p ∨ ¬p)
State formula: [C:σ]X(p ∨ p)
Path formula: pU([C:σ]X(p ∨ p))

State formula: 〈〈C〉〉(pU([C:σ]X(p ∨ p)))

These are not well-formed formulas:

GXp
[C:σ][C:σ]p
〈〈C〉〉[C:σ]p
[C:σ]〈〈C〉〉p

9/ 24



Language

For example:

State formula: p ∨ ¬p
Path formula: X(p ∨ ¬p)
State formula: [C:σ]X(p ∨ p)
Path formula: pU([C:σ]X(p ∨ p))
State formula: 〈〈C〉〉(pU([C:σ]X(p ∨ p)))

These are not well-formed formulas:

GXp
[C:σ][C:σ]p
〈〈C〉〉[C:σ]p
[C:σ]〈〈C〉〉p

9/ 24



Language

For example:

State formula: p ∨ ¬p
Path formula: X(p ∨ ¬p)
State formula: [C:σ]X(p ∨ p)
Path formula: pU([C:σ]X(p ∨ p))
State formula: 〈〈C〉〉(pU([C:σ]X(p ∨ p)))

These are not well-formed formulas:

GXp
[C:σ][C:σ]p
〈〈C〉〉[C:σ]p
[C:σ]〈〈C〉〉p

9/ 24



Language

Intended meanings:

Xϕ: ‘ϕ is true in the next state’.
Gϕ: ‘ϕ is true from the current state on’.
ϕ1Uϕ2: ‘ϕ1 is true from the current state on until ϕ2 is true’.
〈〈C〉〉ψ: ‘coalition C has the power of bringing about ψ’.
[C:σ]ψ: ‘if coalition C follows strategy σ then ψ is true’.

10/ 24



Semantics

A computation is an infinite sequence w0, α0, w1, α1, w0, . . .
such that for each pair (wi, αi) we have T (wi, αi) = wi+1

(i.e., it is a path in the model).

Λ(w) denotes the set of all computations starting at w.

Λ(w,C:σ) denotes the set of all computations such that for
each a ∈ C and each pair (wi, αi) in the sequence we have
(σ(wi))(αi) = αi(a)
(i.e., it denotes the set of all computations starting at w such
that coalition C follows strategy σ).

11/ 24



Semantics

A computation is an infinite sequence w0, α0, w1, α1, w0, . . .
such that for each pair (wi, αi) we have T (wi, αi) = wi+1

(i.e., it is a path in the model).

Λ(w) denotes the set of all computations starting at w.

Λ(w,C:σ) denotes the set of all computations such that for
each a ∈ C and each pair (wi, αi) in the sequence we have
(σ(wi))(αi) = αi(a)
(i.e., it denotes the set of all computations starting at w such
that coalition C follows strategy σ).

11/ 24



Semantics

A computation is an infinite sequence w0, α0, w1, α1, w0, . . .
such that for each pair (wi, αi) we have T (wi, αi) = wi+1

(i.e., it is a path in the model).

Λ(w) denotes the set of all computations starting at w.

Λ(w,C:σ) denotes the set of all computations such that for
each a ∈ C and each pair (wi, αi) in the sequence we have
(σ(wi))(αi) = αi(a)
(i.e., it denotes the set of all computations starting at w such
that coalition C follows strategy σ).

11/ 24



Semantics

A computation is an infinite sequence w0, α0, w1, α1, w0, . . .
such that for each pair (wi, αi) we have T (wi, αi) = wi+1

(i.e., it is a path in the model).

Λ(w) denotes the set of all computations starting at w.

Λ(w,C:σ) denotes the set of all computations such that for
each a ∈ C and each pair (wi, αi) in the sequence we have
(σ(wi))(αi) = αi(a)
(i.e., it denotes the set of all computations starting at w such
that coalition C follows strategy σ).

11/ 24



Semantics
For example:

sk
ip

, s
ki

p

transf, skiptransf, spend

skip, spend

p

p

p

p

w0

skip, skip

p

...

...

...

transf, skip

w1

w2

w3

σ = {(w0, α0), (w1, α1), . . . }

Λ(w0) is the whole tree.
Λ(w0, {a}:σ) contains computations “passing” by w1, w2 and
w3.

Note that Λ(w, ∅:σ) = Λ(w) and Λ(w,Agt:σ) is a singleton.

12/ 24



Semantics
For example:

sk
ip

, s
ki

p

transf, skiptransf, spend

skip, spend

p

p

p

p

w0

skip, skip

p

...

...

...

transf, skip

w1

w2

w3

σ = {(w0, α0), (w1, α1), . . . }
Λ(w0) is the whole tree.

Λ(w0, {a}:σ) contains computations “passing” by w1, w2 and
w3.

Note that Λ(w, ∅:σ) = Λ(w) and Λ(w,Agt:σ) is a singleton.

12/ 24



Semantics
For example:

sk
ip

, s
ki

p

transf, skiptransf, spend

skip, spend

p

p

p

p

w0

skip, skip

p

...

...

...

transf, skip

w1

w2

w3

σ = {(w0, α0), (w1, α1), . . . }
Λ(w0) is the whole tree.
Λ(w0, {a}:σ) contains computations “passing” by w1, w2 and
w3.

Note that Λ(w, ∅:σ) = Λ(w) and Λ(w,Agt:σ) is a singleton.

12/ 24



Semantics
For example:

sk
ip

, s
ki

p

transf, skiptransf, spend

skip, spend

p

p

p

p

w0

skip, skip

p

...

...

...

transf, skip

w1

w2

w3

σ = {(w0, α0), (w1, α1), . . . }
Λ(w0) is the whole tree.
Λ(w0, {a}:σ) contains computations “passing” by w1, w2 and
w3.

Note that Λ(w, ∅:σ) = Λ(w) and Λ(w,Agt:σ) is a singleton.
12/ 24



Semantics

M, w |= [C:σ]ψ iff for all λ ∈ Λ(w,C:σ) we have M, λ |= ψ

M, w |= 〈〈C〉〉ψ iff there is σ ∈ Σ such that
for all λ ∈ Λ(w,C:σ) we have M, λ |= ψ

Let λ = w0, α0, w1, α1, . . . :

M, λ |= Xϕ iff M, w1 |= ϕ

M, λ |= Gϕ iff for all i ∈ N we have M, wi |= ϕ

M, λ |= ϕ1Uϕ2 iff there is i ∈ N such that M, wi |= ϕ2 and
for all k ∈ N if 0 ≤ k < i then M, wk |= ϕ1

13/ 24



Semantics

M, w |= [C:σ]ψ iff for all λ ∈ Λ(w,C:σ) we have M, λ |= ψ

M, w |= 〈〈C〉〉ψ iff there is σ ∈ Σ such that
for all λ ∈ Λ(w,C:σ) we have M, λ |= ψ

Let λ = w0, α0, w1, α1, . . . :

M, λ |= Xϕ iff M, w1 |= ϕ

M, λ |= Gϕ iff for all i ∈ N we have M, wi |= ϕ

M, λ |= ϕ1Uϕ2 iff there is i ∈ N such that M, wi |= ϕ2 and
for all k ∈ N if 0 ≤ k < i then M, wk |= ϕ1

13/ 24



CATL

CATL model checking is in PTIME [van der Hoek et al., 2005].

CATL satisfiability checking is in EXPTIME
[Walther et al., 2007].

14/ 24



Adding Obligations

We adapt the idea of [d’Altan et al., 1996].
First, the set of atoms is now Atm ∪Atmv where:

Atmv = {vC : C ⊆ Agt and C 6= ∅}

Second, models are as before, but:
I V : Atm ∪Atmv → 2W ,
I for all C ⊆ Agt and all w ∈W

there is α ∈ Jact and w′ ∈W such that
T (w,α) = w′ and w′ 6∈ V (vC).

(The latter is equivalent to the axiom scheme ¬〈〈∅〉〉XvC .)
Then obligations can be defined as abbreviations:

OXCϕ
def= 〈〈∅〉〉X(¬ϕ→ vC)

OGCϕ
def= 〈〈∅〉〉G(¬ϕ→ vC)

where ϕ is a state formula.

15/ 24



Adding Obligations
We adapt the idea of [d’Altan et al., 1996].

First, the set of atoms is now Atm ∪Atmv where:

Atmv = {vC : C ⊆ Agt and C 6= ∅}

Second, models are as before, but:
I V : Atm ∪Atmv → 2W ,
I for all C ⊆ Agt and all w ∈W

there is α ∈ Jact and w′ ∈W such that
T (w,α) = w′ and w′ 6∈ V (vC).

(The latter is equivalent to the axiom scheme ¬〈〈∅〉〉XvC .)
Then obligations can be defined as abbreviations:

OXCϕ
def= 〈〈∅〉〉X(¬ϕ→ vC)

OGCϕ
def= 〈〈∅〉〉G(¬ϕ→ vC)

where ϕ is a state formula.

15/ 24



Adding Obligations
We adapt the idea of [d’Altan et al., 1996].
First, the set of atoms is now Atm ∪Atmv where:

Atmv = {vC : C ⊆ Agt and C 6= ∅}

Second, models are as before, but:
I V : Atm ∪Atmv → 2W ,
I for all C ⊆ Agt and all w ∈W

there is α ∈ Jact and w′ ∈W such that
T (w,α) = w′ and w′ 6∈ V (vC).

(The latter is equivalent to the axiom scheme ¬〈〈∅〉〉XvC .)
Then obligations can be defined as abbreviations:

OXCϕ
def= 〈〈∅〉〉X(¬ϕ→ vC)

OGCϕ
def= 〈〈∅〉〉G(¬ϕ→ vC)

where ϕ is a state formula.

15/ 24



Adding Obligations
We adapt the idea of [d’Altan et al., 1996].
First, the set of atoms is now Atm ∪Atmv where:

Atmv = {vC : C ⊆ Agt and C 6= ∅}

Second, models are as before, but:
I V : Atm ∪Atmv → 2W ,
I for all C ⊆ Agt and all w ∈W

there is α ∈ Jact and w′ ∈W such that
T (w,α) = w′ and w′ 6∈ V (vC).

(The latter is equivalent to the axiom scheme ¬〈〈∅〉〉XvC .)

Then obligations can be defined as abbreviations:

OXCϕ
def= 〈〈∅〉〉X(¬ϕ→ vC)

OGCϕ
def= 〈〈∅〉〉G(¬ϕ→ vC)

where ϕ is a state formula.

15/ 24



Adding Obligations
We adapt the idea of [d’Altan et al., 1996].
First, the set of atoms is now Atm ∪Atmv where:

Atmv = {vC : C ⊆ Agt and C 6= ∅}

Second, models are as before, but:
I V : Atm ∪Atmv → 2W ,
I for all C ⊆ Agt and all w ∈W

there is α ∈ Jact and w′ ∈W such that
T (w,α) = w′ and w′ 6∈ V (vC).

(The latter is equivalent to the axiom scheme ¬〈〈∅〉〉XvC .)
Then obligations can be defined as abbreviations:

OXCϕ
def= 〈〈∅〉〉X(¬ϕ→ vC)

OGCϕ
def= 〈〈∅〉〉G(¬ϕ→ vC)

where ϕ is a state formula.
15/ 24



Adding Intentional Behaviour

ACψ should be read: ‘coalition C attempts to bring about ψ’.

We propose that coalition C attempts to bring about ψ
whenever C behaves in such a way that will “probably” lead to a
state satisfying ψ.

In our framework it can be defined by:

Coalition C attempts to bring about ψ if and only if either
C brings about ψ even though C could allow for ¬ψ, or
C allows for ψ even though C could bring about ¬ψ.

Note that ACψ must be a path formula.

For example, if we want to check whether coalition C attempts
to bring about Xϕ, it is necessary to look at the joint action that
C will execute in the current state. Therefore, ACXϕ cannot be
evaluated in a single state of the system. Rather, it should be
evaluated in a “run of the system”. In CATL terms: it should be
evaluated in a computation.

16/ 24



Adding Intentional Behaviour
ACψ should be read: ‘coalition C attempts to bring about ψ’.

We propose that coalition C attempts to bring about ψ
whenever C behaves in such a way that will “probably” lead to a
state satisfying ψ.

In our framework it can be defined by:

Coalition C attempts to bring about ψ if and only if either
C brings about ψ even though C could allow for ¬ψ, or
C allows for ψ even though C could bring about ¬ψ.

Note that ACψ must be a path formula.

For example, if we want to check whether coalition C attempts
to bring about Xϕ, it is necessary to look at the joint action that
C will execute in the current state. Therefore, ACXϕ cannot be
evaluated in a single state of the system. Rather, it should be
evaluated in a “run of the system”. In CATL terms: it should be
evaluated in a computation.

16/ 24



Adding Intentional Behaviour
ACψ should be read: ‘coalition C attempts to bring about ψ’.

We propose that coalition C attempts to bring about ψ
whenever C behaves in such a way that will “probably” lead to a
state satisfying ψ.

In our framework it can be defined by:

Coalition C attempts to bring about ψ if and only if either
C brings about ψ even though C could allow for ¬ψ, or
C allows for ψ even though C could bring about ¬ψ.

Note that ACψ must be a path formula.

For example, if we want to check whether coalition C attempts
to bring about Xϕ, it is necessary to look at the joint action that
C will execute in the current state. Therefore, ACXϕ cannot be
evaluated in a single state of the system. Rather, it should be
evaluated in a “run of the system”. In CATL terms: it should be
evaluated in a computation.

16/ 24



Adding Intentional Behaviour
ACψ should be read: ‘coalition C attempts to bring about ψ’.

We propose that coalition C attempts to bring about ψ
whenever C behaves in such a way that will “probably” lead to a
state satisfying ψ.

In our framework it can be defined by:

Coalition C attempts to bring about ψ if and only if either
C brings about ψ even though C could allow for ¬ψ, or
C allows for ψ even though C could bring about ¬ψ.

Note that ACψ must be a path formula.

For example, if we want to check whether coalition C attempts
to bring about Xϕ, it is necessary to look at the joint action that
C will execute in the current state. Therefore, ACXϕ cannot be
evaluated in a single state of the system. Rather, it should be
evaluated in a “run of the system”. In CATL terms: it should be
evaluated in a computation.

16/ 24



Adding Intentional Behaviour
ACψ should be read: ‘coalition C attempts to bring about ψ’.

We propose that coalition C attempts to bring about ψ
whenever C behaves in such a way that will “probably” lead to a
state satisfying ψ.

In our framework it can be defined by:

Coalition C attempts to bring about ψ if and only if either
C brings about ψ even though C could allow for ¬ψ, or
C allows for ψ even though C could bring about ¬ψ.

Note that ACψ must be a path formula.

For example, if we want to check whether coalition C attempts
to bring about Xϕ, it is necessary to look at the joint action that
C will execute in the current state. Therefore, ACXϕ cannot be
evaluated in a single state of the system. Rather, it should be
evaluated in a “run of the system”. In CATL terms: it should be
evaluated in a computation.

16/ 24



Adding Intentional Behaviour

Formally:

Let λ = w0, α0, w1, α1, . . . , and
let σ = {(w0, α0), (w1, α1), . . . }.

M, λ |= ACψ if and only if

for all λ′ ∈ Λ(w0, C:σ) we have M, λ′ |= ψ and
there is σ′ ∈ Σ and λ′′ ∈ Λ(w0, C:σ′) such that M, λ′′ 6|= ψ

or
there is λ′ ∈ Λ(w0, C:σ) such that M, λ′ |= ψ and
there is σ′ ∈ Σ s.t. for all λ′′ ∈ Λ(w0, C:σ′), M, λ′′ 6|= ψ

17/ 24



Adding Intentional Behaviour
Unfortunately, the logic is not expressive enough to
accommodate the operator A as an abbreviation.

Instead of proposing a new logic we prefer to keep our
formalism as simple as possible. We therefore decided to
express a notion that is close to the latter.

We express that
‘If C follows σ then C attempts to bring about ϕ in the next
state’, by:

AXC:σϕ
def= ([C:σ]Xϕ ∧ 〈〈Agt〉〉X¬ϕ) ∨ (¬[C:σ]X¬ϕ ∧ 〈〈C〉〉X¬ϕ)

and we express that
‘If C follows σ then C attempts to bring about ϕ from now on’,
by:

AGC:σϕ
def= ([C:σ]Gϕ∧〈〈Agt〉〉(>U¬ϕ))∨(¬[C:σ](>U¬ϕ)∧〈〈C〉〉(>U¬ϕ))

18/ 24



Adding Intentional Behaviour
Unfortunately, the logic is not expressive enough to
accommodate the operator A as an abbreviation.

Instead of proposing a new logic we prefer to keep our
formalism as simple as possible. We therefore decided to
express a notion that is close to the latter.

We express that
‘If C follows σ then C attempts to bring about ϕ in the next
state’, by:

AXC:σϕ
def= ([C:σ]Xϕ ∧ 〈〈Agt〉〉X¬ϕ) ∨ (¬[C:σ]X¬ϕ ∧ 〈〈C〉〉X¬ϕ)

and we express that
‘If C follows σ then C attempts to bring about ϕ from now on’,
by:

AGC:σϕ
def= ([C:σ]Gϕ∧〈〈Agt〉〉(>U¬ϕ))∨(¬[C:σ](>U¬ϕ)∧〈〈C〉〉(>U¬ϕ))

18/ 24



Adding Intentional Behaviour
Unfortunately, the logic is not expressive enough to
accommodate the operator A as an abbreviation.

Instead of proposing a new logic we prefer to keep our
formalism as simple as possible. We therefore decided to
express a notion that is close to the latter.

We express that
‘If C follows σ then C attempts to bring about ϕ in the next
state’, by:

AXC:σϕ
def= ([C:σ]Xϕ ∧ 〈〈Agt〉〉X¬ϕ) ∨ (¬[C:σ]X¬ϕ ∧ 〈〈C〉〉X¬ϕ)

and we express that
‘If C follows σ then C attempts to bring about ϕ from now on’,
by:

AGC:σϕ
def= ([C:σ]Gϕ∧〈〈Agt〉〉(>U¬ϕ))∨(¬[C:σ](>U¬ϕ)∧〈〈C〉〉(>U¬ϕ))

18/ 24



Forward-Looking vs. Backward-Looking

Forward-looking responsibility is defined by:

FRXCϕ
def= OXCϕ ∧ 〈〈C〉〉Xϕ

Backward-looking responsibility is defined by:

BRXC:σvC
def= [C:σ]XvC ∧AXC:σvC

BRXC:σvC is read: ‘if C follows σ then C is backward-looking
responsible for vC in the next state’.

We define it only for violations because of the “wrong-doing”
condition.

19/ 24



Forward-Looking vs. Backward-Looking

Forward-looking responsibility is defined by:

FRXCϕ
def= OXCϕ ∧ 〈〈C〉〉Xϕ

Backward-looking responsibility is defined by:

BRXC:σvC
def= [C:σ]XvC ∧AXC:σvC

BRXC:σvC is read: ‘if C follows σ then C is backward-looking
responsible for vC in the next state’.

We define it only for violations because of the “wrong-doing”
condition.

19/ 24



Forward-Looking vs. Backward-Looking

Forward-looking responsibility is defined by:

FRXCϕ
def= OXCϕ ∧ 〈〈C〉〉Xϕ

Backward-looking responsibility is defined by:

BRXC:σvC
def= [C:σ]XvC ∧AXC:σvC

BRXC:σvC is read: ‘if C follows σ then C is backward-looking
responsible for vC in the next state’.

We define it only for violations because of the “wrong-doing”
condition.

19/ 24



Forward-Looking vs. Backward-Looking

Forward-looking responsibility is defined by:

FRXCϕ
def= OXCϕ ∧ 〈〈C〉〉Xϕ

Backward-looking responsibility is defined by:

BRXC:σvC
def= [C:σ]XvC ∧AXC:σvC

BRXC:σvC is read: ‘if C follows σ then C is backward-looking
responsible for vC in the next state’.

We define it only for violations because of the “wrong-doing”
condition.

19/ 24



Forward-Looking vs. Backward-Looking

Forward-looking responsibility is defined by:

FRXCϕ
def= OXCϕ ∧ 〈〈C〉〉Xϕ

Backward-looking responsibility is defined by:

BRXC:σvC
def= [C:σ]XvC ∧AXC:σvC

BRXC:σvC is read: ‘if C follows σ then C is backward-looking
responsible for vC in the next state’.

We define it only for violations because of the “wrong-doing”
condition.

19/ 24



Forward-Looking vs. Backward-Looking

The following formula is valid:

(FRXCϕ ∧ [C:σ]X¬ϕ) → BRXC:σvC)

If C is held forward-looking responsible for ϕ and C follows a
strategy that leads to a failure then C is backward-looking
responsible for it.

Proof. Indeed since:
M, w |= OXCϕ iff M, w |= 〈〈∅〉〉X(¬ϕ→ vC).
Then M, w |= OXCϕ ∧ [C:σ]X¬ϕ implies M, w |= [C:σ]XvC .
Moreover, remember that M, w |= ¬〈〈∅〉〉XvC ,
which implies M, w |= 〈〈Agt〉〉X¬vC .
Therefore, M, w |= [C:σ]XvC ∧ 〈〈Agt〉〉X¬vC ,
which immediately implies M, w |= BRXC:σvC .

20/ 24



Forward-Looking vs. Backward-Looking

The following formula is valid:

(FRXCϕ ∧ [C:σ]X¬ϕ) → BRXC:σvC)

If C is held forward-looking responsible for ϕ and C follows a
strategy that leads to a failure then C is backward-looking
responsible for it.

Proof. Indeed since:
M, w |= OXCϕ iff M, w |= 〈〈∅〉〉X(¬ϕ→ vC).
Then M, w |= OXCϕ ∧ [C:σ]X¬ϕ implies M, w |= [C:σ]XvC .
Moreover, remember that M, w |= ¬〈〈∅〉〉XvC ,
which implies M, w |= 〈〈Agt〉〉X¬vC .
Therefore, M, w |= [C:σ]XvC ∧ 〈〈Agt〉〉X¬vC ,
which immediately implies M, w |= BRXC:σvC .

20/ 24



Forward-Looking vs. Backward-Looking
For example,

sk
ip

, s
ki

p

transf, skiptransf, spend

p

p

p

p

w0

skip, skip

p

...

...

...

transf, skip

w1

w2

w3

skip, spend

va

va

We have M, w0 |= 〈〈∅〉〉X(¬p→ va) ∧ 〈〈a〉〉Xp.
If and only if M, w0 |= OXap ∧ 〈〈a〉〉Xp.
Then we have M, w0 |= FRXap.
We also have M, w0 |= [a:σ]Xva ∧ 〈〈Agt〉〉X¬va.
Then we have M, w0 |= [a:σ]va ∧AXa:σva.
Therefore, M, w0 |= BRXa:σva.

21/ 24



Forward-Looking vs. Backward-Looking
For example,

sk
ip

, s
ki

p

transf, skiptransf, spend

p

p

p

p

w0

skip, skip

p

...

...

...

transf, skip

w1

w2

w3

skip, spend

va

va

We have M, w0 |= 〈〈∅〉〉X(¬p→ va) ∧ 〈〈a〉〉Xp.

If and only if M, w0 |= OXap ∧ 〈〈a〉〉Xp.
Then we have M, w0 |= FRXap.
We also have M, w0 |= [a:σ]Xva ∧ 〈〈Agt〉〉X¬va.
Then we have M, w0 |= [a:σ]va ∧AXa:σva.
Therefore, M, w0 |= BRXa:σva.

21/ 24



Forward-Looking vs. Backward-Looking
For example,

sk
ip

, s
ki

p

transf, skiptransf, spend

p

p

p

p

w0

skip, skip

p

...

...

...

transf, skip

w1

w2

w3

skip, spend

va

va

We have M, w0 |= 〈〈∅〉〉X(¬p→ va) ∧ 〈〈a〉〉Xp.
If and only if M, w0 |= OXap ∧ 〈〈a〉〉Xp.

Then we have M, w0 |= FRXap.
We also have M, w0 |= [a:σ]Xva ∧ 〈〈Agt〉〉X¬va.
Then we have M, w0 |= [a:σ]va ∧AXa:σva.
Therefore, M, w0 |= BRXa:σva.

21/ 24



Forward-Looking vs. Backward-Looking
For example,

sk
ip

, s
ki

p

transf, skiptransf, spend

p

p

p

p

w0

skip, skip

p

...

...

...

transf, skip

w1

w2

w3

skip, spend

va

va

We have M, w0 |= 〈〈∅〉〉X(¬p→ va) ∧ 〈〈a〉〉Xp.
If and only if M, w0 |= OXap ∧ 〈〈a〉〉Xp.
Then we have M, w0 |= FRXap.

We also have M, w0 |= [a:σ]Xva ∧ 〈〈Agt〉〉X¬va.
Then we have M, w0 |= [a:σ]va ∧AXa:σva.
Therefore, M, w0 |= BRXa:σva.

21/ 24



Forward-Looking vs. Backward-Looking
For example,

sk
ip

, s
ki

p

transf, skiptransf, spend

p

p

p

p

w0

skip, skip

p

...

...

...

transf, skip

w1

w2

w3

skip, spend

va

va

We have M, w0 |= 〈〈∅〉〉X(¬p→ va) ∧ 〈〈a〉〉Xp.
If and only if M, w0 |= OXap ∧ 〈〈a〉〉Xp.
Then we have M, w0 |= FRXap.
We also have M, w0 |= [a:σ]Xva ∧ 〈〈Agt〉〉X¬va.

Then we have M, w0 |= [a:σ]va ∧AXa:σva.
Therefore, M, w0 |= BRXa:σva.

21/ 24



Forward-Looking vs. Backward-Looking
For example,

sk
ip

, s
ki

p

transf, skiptransf, spend

p

p

p

p

w0

skip, skip

p

...

...

...

transf, skip

w1

w2

w3

skip, spend

va

va

We have M, w0 |= 〈〈∅〉〉X(¬p→ va) ∧ 〈〈a〉〉Xp.
If and only if M, w0 |= OXap ∧ 〈〈a〉〉Xp.
Then we have M, w0 |= FRXap.
We also have M, w0 |= [a:σ]Xva ∧ 〈〈Agt〉〉X¬va.
Then we have M, w0 |= [a:σ]va ∧AXa:σva.

Therefore, M, w0 |= BRXa:σva.

21/ 24



Forward-Looking vs. Backward-Looking
For example,

sk
ip

, s
ki

p

transf, skiptransf, spend

p

p

p

p

w0

skip, skip

p

...

...

...

transf, skip

w1

w2

w3

skip, spend

va

va

We have M, w0 |= 〈〈∅〉〉X(¬p→ va) ∧ 〈〈a〉〉Xp.
If and only if M, w0 |= OXap ∧ 〈〈a〉〉Xp.
Then we have M, w0 |= FRXap.
We also have M, w0 |= [a:σ]Xva ∧ 〈〈Agt〉〉X¬va.
Then we have M, w0 |= [a:σ]va ∧AXa:σva.
Therefore, M, w0 |= BRXa:σva.

21/ 24



Future Works
States of Affairs vs. Actions

Forward-looking responsibility inherits from obligations the
distinction between ought-to-do and ought-to-be statements.

Consider the example of the bank account again. Note that the
responsibility of maintaining the balances positive together with
the fact that account 2 will be negative implies the responsibility
for making a transfer to account 2.

That is, Alice is responsible for executing an action (or,
following a strategy).

We can also define dynamic obligations as abbreviations:

OXC(σ) def= [C:σ]XvC

OGC(σ) def= [C:σ]GvC

where σ is stand for not-σ.

We need to define operations over strategies, similar to PDL.

22/ 24



Future Works
States of Affairs vs. Actions

Forward-looking responsibility inherits from obligations the
distinction between ought-to-do and ought-to-be statements.

Consider the example of the bank account again. Note that the
responsibility of maintaining the balances positive together with
the fact that account 2 will be negative implies the responsibility
for making a transfer to account 2.

That is, Alice is responsible for executing an action (or,
following a strategy).

We can also define dynamic obligations as abbreviations:

OXC(σ) def= [C:σ]XvC

OGC(σ) def= [C:σ]GvC

where σ is stand for not-σ.

We need to define operations over strategies, similar to PDL.

22/ 24



Future Works
States of Affairs vs. Actions

Forward-looking responsibility inherits from obligations the
distinction between ought-to-do and ought-to-be statements.

Consider the example of the bank account again. Note that the
responsibility of maintaining the balances positive together with
the fact that account 2 will be negative implies the responsibility
for making a transfer to account 2.

That is, Alice is responsible for executing an action (or,
following a strategy).

We can also define dynamic obligations as abbreviations:

OXC(σ) def= [C:σ]XvC

OGC(σ) def= [C:σ]GvC

where σ is stand for not-σ.

We need to define operations over strategies, similar to PDL.

22/ 24



Future Works
States of Affairs vs. Actions

Forward-looking responsibility inherits from obligations the
distinction between ought-to-do and ought-to-be statements.

Consider the example of the bank account again. Note that the
responsibility of maintaining the balances positive together with
the fact that account 2 will be negative implies the responsibility
for making a transfer to account 2.

That is, Alice is responsible for executing an action (or,
following a strategy).

We can also define dynamic obligations as abbreviations:

OXC(σ) def= [C:σ]XvC

OGC(σ) def= [C:σ]GvC

where σ is stand for not-σ.

We need to define operations over strategies, similar to PDL.

22/ 24



Future Works
States of Affairs vs. Actions

Forward-looking responsibility inherits from obligations the
distinction between ought-to-do and ought-to-be statements.

Consider the example of the bank account again. Note that the
responsibility of maintaining the balances positive together with
the fact that account 2 will be negative implies the responsibility
for making a transfer to account 2.

That is, Alice is responsible for executing an action (or,
following a strategy).

We can also define dynamic obligations as abbreviations:

OXC(σ) def= [C:σ]XvC

OGC(σ) def= [C:σ]GvC

where σ is stand for not-σ.

We need to define operations over strategies, similar to PDL.

22/ 24



Future Works
States of Affairs vs. Actions

Forward-looking responsibility inherits from obligations the
distinction between ought-to-do and ought-to-be statements.

Consider the example of the bank account again. Note that the
responsibility of maintaining the balances positive together with
the fact that account 2 will be negative implies the responsibility
for making a transfer to account 2.

That is, Alice is responsible for executing an action (or,
following a strategy).

We can also define dynamic obligations as abbreviations:

OXC(σ) def= [C:σ]XvC

OGC(σ) def= [C:σ]GvC

where σ is stand for not-σ.

We need to define operations over strategies, similar to PDL.
22/ 24



Future Works
Complete Knowledge Assumption

Consider once more the example with Alice. Note that we
made the implicit assumption that she knows the result of
action spend.

What would happen if Alice did not know it? We probably would
not consider her backward-looking responsible for the balance
is negative on Wednesday.

The addition of an operator K for knowledge in ATL was already
proposed by [van der Hoek and Wooldridge, 2003].

However in our framework there are some technical problems
to be solved. For instance its interaction with obligations.

23/ 24



Future Works
Complete Knowledge Assumption

Consider once more the example with Alice. Note that we
made the implicit assumption that she knows the result of
action spend.

What would happen if Alice did not know it? We probably would
not consider her backward-looking responsible for the balance
is negative on Wednesday.

The addition of an operator K for knowledge in ATL was already
proposed by [van der Hoek and Wooldridge, 2003].

However in our framework there are some technical problems
to be solved. For instance its interaction with obligations.

23/ 24



Future Works
Complete Knowledge Assumption

Consider once more the example with Alice. Note that we
made the implicit assumption that she knows the result of
action spend.

What would happen if Alice did not know it? We probably would
not consider her backward-looking responsible for the balance
is negative on Wednesday.

The addition of an operator K for knowledge in ATL was already
proposed by [van der Hoek and Wooldridge, 2003].

However in our framework there are some technical problems
to be solved. For instance its interaction with obligations.

23/ 24



Future Works
Complete Knowledge Assumption

Consider once more the example with Alice. Note that we
made the implicit assumption that she knows the result of
action spend.

What would happen if Alice did not know it? We probably would
not consider her backward-looking responsible for the balance
is negative on Wednesday.

The addition of an operator K for knowledge in ATL was already
proposed by [van der Hoek and Wooldridge, 2003].

However in our framework there are some technical problems
to be solved. For instance its interaction with obligations.

23/ 24



Thank you!

24/ 24


